
Reducing Heterogeneity in Volunteer
Computing using Virtual Machines

Kevin Reed
University of Illinois Graduate Student

reed21@illinois.edu

Abstract: Volunteer computing derives its processing power
from many computers volunteered by the public. Obtaining
processing power in this fashion means that there will be
large variations in the operating system, operating system
version, installed software and library versions on the
different contributing computers. This heterogeneity creates
many problems for the administrators of a volunteer
computing project. This paper looks at one particular
problem this heterogeneity causes and reviews a prototype
that solved this problem using virtual machines.

1. Introduction

Volunteer computing is a type of grid computing where
the computers that process work for the grid are volunteered
by members of the public. As the computers are not
controlled by the person or organization conducting
processing on the grid, the volunteered computers cannot be
trusted. In order to produce reliable results from untrusted
computers, volunteer computing systems such as BOINC
provide mechanisms to support redundant computing.[1]
Redundant computing is a technique which sends each unit of
work to at least two computers. The results from those
computers are returned to the server and compared to see if
the results agree. If they do not, then additional copies are
sent to different computers until a consensus can be reached.
Results can be compared to see if they are either identical or
within an acceptable range of variance.

Volunteered computers are extremely diverse in terms of
the operating system that is run, operating system version,
available memory, processor manufacturer and model.[2] In
addition, some research applications are sensitive to minor
variations.[3] Small differences can compound and yield large
differences in the final result. One of the sources of this
problem is due to differences in compilers and optimizations
settings chosen.[4] This creates a problem for validating
results returned from different computers.

One way to address this problem is to reduce the
variations between the machines. Virtual machines are an
ideal candidate to help reduce the variation between machines
and standardize the execution environment for the grid even
on diverse machines.

This paper briefly reviews the problem of differing
floating point computations as described by Lopez, Taufer
and Teller [3]. It then discusses the requirements that are
required for a virtual machine to be useful on a volunteer
computing grid. Next, it discusses the prototype that was
constructed . Finally, it discusses how this could be
integrated into the BOINC software, other work being done in
this area and where this work could be extended in the future.

2. Demonstration of problem

The problem described in the Lopez, Taufer and Teller
paper is illustrated in the following example. I developed a
small application which estimates the value of pi by summing
the first 1000 terms of the Leibniz series. I then compiled this
application using Microsoft Visual C++ 2008 Express Edition
on Windows XP and gcc version 4.3.1 on Open Suse 11. I
used 2 different compiler optimization options on each
platform. Table 1 shows the value of pi at after 1the first 000
terms of the series have been summed.

Operating System Optimization Estimated Pi/
Difference

Windows XP Disabled (/Od) 3.140592575
0.001000079

Windows XP Full (/Ox) 3.140592575
0.001000079

Open Suse 11 None Set 3.140592575
0.001000079

Open Suse 11 -O3 3.140592860
0.000999793

Table 1. Results for PI with different compilers and
optimization settings

In the fourth case, the value of pi has a small difference
from the other cases. Although this is a small difference,
certain applications can compound this difference, or other
similar differences, to generate large differences in result
values.[3]

3. Software Selection

In order for virtual machines to be used widely on
volunteer computing projects, the technology needs to meet
the following criteria:

1. The virtualization software must be available at no
cost to the volunteers

2. The guest operating system must be available at no
cost to the volunteers

3. The virtual machine should run unobtrusively on the
volunteers machine

4. There must exist an management interface that will
allow the BOINC client to insert and remove files, start
and monitor applications in the guest, and start and stop
the virtual machine

5. It must be straightforward for volunteer to install and
maintain the virtual machine monitor software

Based on this criteria, I choose to create a prototype using
the VMware Server 2 using Windows as the host and Linux
as the Guest. Both VMware Server 2 and Linux are available
at no cost to the volunteers. This meets criteria 1 and 2
above. VMware Server 2 allows you to launch a virtual

machine with no visible interface (an interface can be started
via the admin console but it is not required) which meets
criteria 3. The VIX libraries
(http://www.vmware.com/support/developer/vix-api/) and
VMware Tools provide an interface that can be used to
control the operations of a virtual machine. This meets
criteria 4. Unfortunately, there is a some complexity
involved in installing and setting up VMware Server so
criteria 5 was only partially met.

4. Prototype

In order to demonstrate that the a virtual machine can
solve the problem describe earlier, the prototype will need to
run the Linux binary within a previously prepared virtual
machine and generate a value consistent the Linux binary
running on native Linux. Additionally, in order to
demonstrate the suitability of running on a volunteer
computing project, the prototype needs to demonstrate the
following capabilities:

1. Manage the Image: use a provided virtual machine
image, but allow for a subsequent task to also use the
original unmodified virtual machine image

2. Boot the virtual machine
3. Copy files on the host into the guest
4. Run a program on the guest
5. Pause and unpause the guest
6. Retrieve files from the guest
7. Shutdown the guest

Use of the prototype requires that VMware Server 2.0 or
higher is installed on the computer where it is run. The
virtual machine image needs to located in a subdirectory of a
directory configured as a data store in VMware Server.

4.1 Manage the Image

For the prototype, I created a Linux image using
OpenSuse11. It took several iterations in order to get an
image built that would meet the requirements, but also be as
small as possible. Unfortunately, the image I produced was
larger than I would have liked (after compression it is
670MB). This was due to the fact that the VWware Tools
needed to be built specifically for OpenSuse11 and thus
required a number of development tools to be installed.
Further work could be done in the future to create a smaller
image that minimizes the tools installed, and remove tools
only required to build the VMware Tools. Following the
creation of the image, I took a baseline snapshot of the image.

The prototype requires three parameters: a reference to
the virtual machine image, the user name and password for
the user that VMServer is running under.

Using this information, the prototype begins by
connecting to the VMware server (VixHost_Connect) running
on the local computer, registers the passed in image with the
server (VixHost_RegisterVM) and then opens the
image(VixVM_Open). Next, it obtains a reference to the

snapshot (VixVM_GetRootSnapshot) that I took after the
image was created and reverts the instance to that
snapshot(VixVM_RevertToSnapshot). This ensures that the
virtual machine is in an unmodified state regardless of any
other task that may have been run in the image.

It is worth noting, that my original preference would have
been to use the function VixVM_Clone to create a 'linked'
clone. A linked clone shares the virtual disks with the parent
in much of the same way as a child process shares memory
with its parents using the copy on write strategy.
Unfortunately, the function is not supported with VMware
Server – only VMware Workstation.

4.2 Boot the virtual machine

Booting the virtual machine consists of powering on the
virtual machine (VixVM_PowerOn) and then waiting for the
startup and boot process to complete. VMware provides a
function that lets you know when the VMware tools are
available in the guest (VixVM_WaitForToolsInGuest). They
suggest using this to determine when the guest has finished
booting.

4.3 Copy files on the host into the guest

Coping files from the host into the guest is the next step.
In order to execute the next several calls, you must first login
to the guest as a user that is known to the guest. This is done
using the VixVM_LoginInGuest function.

The next step is create a directory in the guest
(VixVM_CreateDirectoryInGuest) and then copy two files
from the host into the newly created directory
(VixVM_CopyFileFromHostToGuest). The second file was
the application I wanted to run. The first file as a shell script.
VMware does not guarantee that the current working
directory will be set for a program on the guest is executed by
a process running on the host. Therefore, the script that was
copied will set the current working directory to the directory
that was created above and then it will run the program that
was copied.

I used the version of the test application that was compiled
with the -O3 optimization in order to demonstrate that we
could obtain the same result as on a Linux host.

4.4 Run a program on the guest

The files that were copied into the guest did not have
execute permissions set on them. In order to the run the
program, I first had to set the permissions using chmod. This
was done using the VixVM_RunProgramInGuest function.
Finally, I was able to run the script (which in turn calls the
application). This was also run using the
VixVM_RunProgramInGuest function. The script redirects
the output into a new file.

4.5 Pause and unpause the guest

The VIX api provides two functions that allow you to

http://www.vmware.com/support/developer/vix-api/

temporarily stop execution of the virtual machine. These are
VixVM_Pause and VixVM_Unpause. These are used to
demonstrate that they work as documented in the API.

4.7 Retrieve files from the guest

Files can be copied from the guest to host using
VixVM_CopyFileFromGuestToHost. In this case we retrieve
the file that contains the redirect stdout of the example
application. As we had hoped, the file contains an estimated
value of pi of 3.140592860. Matching the result computed
when run directly on a Linux host.

4.8 Shutdown the guest

Now that the program has finished running, the virtual
machine can be powered off (VixVM_PowerOff) and then
removed from the servers registry (VixHost_UnregisterVM).

5. Proposed Integration with BOINC

The following discussion provides an example of how the
techniques demonstrated in the prototype discussed above
could be used to make it convenient to use virtual machines
with BOINC.

BOINC has a concept of a platform which is a
combination of chip architecture and operating system. The
client will inform the server what is its preferred platform and
what alternate platforms it will accept. This was initially
developed for 64 bit clients so that they could download and
use 64 bit applications if they were available, but if they
weren't available then they would accept a 32 bit client.

I propose that BOINC extend this concept further so that
the client can inform the server that it supports additional
platforms. These additional platforms are available to the
client based upon the virtualization software and images
available on the client.

BOINC stores a number of files and settings in a
directory called the data directory. This directory is located
by default at C:\Documents and Settings\All
Users\Application Data\BOINC. I propose that BOINC add a
subdirectory to this folder called 'alt_platforms'. Within this
subdirectory, there would reside additional subdirectories,
each of which would be named for the platform that it
represents. In the case of the prototype build above, this
name would be 'i686-pc-linux-gnu'. The name i686-pc-linux-
gnu is the standard name that a BOINC Linux client would
report to the server during its communications. Within this
directory would be an XML definition file that describes the
manager application and all files, as well as the manager
application and the virtual machine files.

The BOINC client would add alternate platforms that it
finds within the alt_platforms directory to the list of platforms
it supports when it communicates with the project server.
When it is assigned a workunit for the platform, the following
steps would performed by the BOINC client:

1. Copy the application binaries and input files into a 'slot'

directory as normal. The slot directory is a working space for
a in-progress workunit
2. Copy the alt-platform directory into a working directory.
I.e. recursively copy C:\Documents and Settings\All
users\Application Data\BOINC\alt_platforms\ i686-pc-linux-
gnu to C:\Documents and Settings\All Users\Application
Data\BOINC\alt_platforms_working\slotX (where X would
be the slot number the workunit was assigned.
3. Start the manager application for the alternate platform
and send it messages as it would for any research application.
These messages would include pause, unpause, exit, etc
4. When the manager application exits, review the return
code to determine if the application ran correctly or not.
Retrieve the result files from the slot directory and return
them to the server.
5. Cleanup the slot directory and the alt_platform_working
directory that was used for the workunit

The manager application should be developed as a
standard BOINC research application. This means that it
should know how to respond to events sent by the BOINC
client and handle them appropriately. In particular, the
manager application should be able to do the following:

1. Register the virtual machine with VMware server and
then open the virtual machine.
2. If a snapshot was distributed with the research
application, then revert to the supplied snapshot. This allows
a project to provide updates to a previously released virtual
machine
3. At initial startup, start the virtual machine and copy the
research application and workunit input files into the virtual
machine
4. Periodically checkpoint the virtual machine by creating a
new snapshot.
5. Pause and unpause execution of the virtual machine as
directed by the client
6. Power down the virtual machine when requested by the
client
7. If restarted while a work unit is in progress, restore the
most recent checkpoint and resume execution from that point
8. Monitor the application status. Once the application
finishes running, then power down the virtual machine and
exit with an appropriate return code based on the return code
of the research application

It would be useful for the the BOINC project to provide a
reference image that volunteers could download and install
into the alt_platform directory. Other BOINC research
projects that want to use virtualization would either provide
their own 'alt_platforms' or they would distribute a snapshot
with their research applications that could be applied against
the reference image. In order for snapshots to be applied, the
BOINC client would need to be aware of a requirement that
the application version should be run within a given virtual
platform.

The volunteers who run the BOINC client on their
machines would need to install the VMware server

file:///C:/Documents
file:///C:/Documents

application and configure a data store to reside at
C:\Documents and Settings\All Users\Application
Data\BOINC\alt_platform_working. This is required so that
the manager application can register a virtual machine with
the VMware server.

6. Related Work

There are two groups that have been working on a similar
effort to what is describe in this paper.

The first group that has been working on this problem is at
CERN. At CERN there is a research application AltFast that,
for the purposes of the Athena research, is tied directly to a
specific version of a Linux build called Scientific Linux Cern
(SLC).[6] In their investigation of using virtualization, they
rule out VMware early because they stated that it is not free.
At the time they did their work, VMWare player may have
been the only free version available. However, the existence
of a free version VMWare server should cause them to review
this point.

They made the decision to pursue using XEN and run the
BOINC client within a virtual machine on XEN. XEN is not
an option for most volunteers due to the complexity in
configuring XEN. Additionally, most volunteers use
Windows XP or Windows Vista and will not be interested in
installing XEN to run BOINC. Finally, one of the strengths
of BOINC is that it has been developed so that it can
minimize the impact of running the research application on
the active user of the computer. If the BOINC client is
running within a virtual machine, then the client cannot
correctly perform certain tasks such as stopping the research
application when the end user is active.

Having said this, it is possible that this choice is a good
choice within CERN. Inside a single organization, machines
can be configured by experts in a consistent fashion. These
experts could ensure that the specific image desired is running
on each machine. However, for broad use in the volunteer
community, this technique will not be sufficient.

The second group that is working on a related problem
documented their findings in a CoreGRID technical report.[5]
They are specifically looking at providing a secure sandbox
for running research applications. They have a similar set of
criteria as the one defined in this paper. They put much
greater weight on the requirement that it be easy for the user
to install – to the extent that the project could distributed the
virtualization software. This requirement eliminates the use
of a product such as VMware Server. Instead, they opted to
use QEMU with the KQEMU accelerator for x86 processors.
In their paper they provide an analysis of the loss in
performance by shifting to a virtualization technology. They
found that running a KQEMU Linux guest at below normal
priority on a Windows host resulted in about a 6% longer
execution time for workunit compared to the time it took to
run on native Linux. Their findings and efforts demonstrate
that QEMU/KQEMU are also an excellent choice for using
virtual machine technology with volunteer computing.

7. Conclusions and Future Work

This paper has demonstrated that virtualization technology
can be used to increase the homogeneity of resources in a
volunteer computing grid. A prototype was created and
explained that showed that all the required functions are
available in VMware server. The possibility of being able
develop a research application for only one or two limited
platforms instead of many platforms is appealing as it
simplifies the work required of project administrators.
Although not a key point of this paper it is worth mentioning
that virtualization provides certain functions such as
'checkpointing' as part of the infrastructure rather than
something that must be implemented in the research
application. This certainly lowers the burden on a project
administrator.

The next steps in this work is to take a deeper look at the
proposed integration with BOINC and develop a more
detailed design that will add direct support for virtualization
to BOINC so that it can be used easily. This will consist of
developing a set of virtual machine managers that can
properly handle the popular virtualization software platforms.

Additionally, work needs to be done to create some
standard 'alt_platforms' that are both references and starting
points for projects to use.

file:///C:/Documents

References

1. David P. Anderson. BOINC: A System for Public-
Resource Computing and Storage. 5th IEEE/ACM
International Workshop on Grid Computing.
November 8, 2004, Pittsburgh, USA.

2. David P. Anderson and Kevin Reed. To appear in the
Hawaii International Conference on System Sciences
(HICSS), January 5-8, 2009.

3. M. Taufer, D. Anderson, P. Cicotti, C. L. Brooks III,
"Homogeneous Redundancy: a Technique to Ensure
Integrity of Molecular Simulation Results Using
Public Computing," ipdps,pp.119a, 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS'05) - Workshop 1, 2005

4. G. Lopez, M. Taufer, and P.J. Teller: Evaluation of
IEEE 754 Floating-Point Arithmetic Compliance
Across a Wide Range of Heterogeneous Computers.
In Proceedings of the 2007 Richard Tapia
Celebration of Diversity in Computing Conference,
October 2007, Orlando, Florida, USA.

5. A. Marosi, P Kacsuk, G Fedak, O. Lodygensky,
“Using Virtual Machines in Desktop Grid Clients for
Application Sandboxing,” CoreGRID TR-140.
August 31, 2008.

6. D. Weir, “BOINC And Paravirtualization” CERN
Twiki:
https://twiki.cern.ch/twiki/bin/view/LHCAtHome/B
OINCAndParavirtualization

Appendix A – Source code used to produce table 1

#include <stdio.h>
#include <string.h>
#include <math.h>

#define PI 3.141592653589793238462643383279

int main ()
{
 float pi = 0;
 int limit = 1000;
 float temp;
 unsigned int i;
 for(i=0; i<limit; i++) {
 if (i%2==0) temp=4.0f/(2*i+1);
 if (i%2==1) temp=-4.0f/(2*i+1);
 pi=pi+temp;
 printf("%d: diff: %.15f, est pi: %.15f\n",i,PI-pi,pi);
 }
}

