Changes between Version 1 and Version 2 of ProjectPapers


Ignore:
Timestamp:
Feb 27, 2008, 8:37:33 AM (17 years ago)
Author:
davea
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ProjectPapers

    v1 v2  
    33Science research projects typically publish their results in
    44[http://en.wikipedia.org/wiki/Scientific_journals scientific journals].
    5 Preliminary results are often often published in
     5Preliminary results are often published in
    66[http://en.wikipedia.org/wiki/Scientific_conference conferences].
    77In the academic world, the scientific contribution of a project
    88is measured largely by the number of its publications,
    9 and the prestige of the journals and conferences in which they appear.
     9and the prestige of the journals and conferences in which they appear
     10(high-prestige journals include '''Nature''', '''Science''', and '''PNAS''').
     11
     12We encourage BOINC volunteers to support projects that make a major scientific contribution.
     13Keep in mind that doing research and publishing papers may take several years,
     14so newer projects will naturally have few or no publications.
    1015
    1116The following scientific papers have resulted from BOINC-based projects
     
    1318or about BOINC itself; those are [BoincPapers here]).
    1419
    15 We encourage BOINC volunteers to use this information in selecting
    16 projects.
    17 Keep in mind that it may the process of doing research and publishing
    18 papers may take several years, so newer project will naturally have
    19 few or no publications.
    20 
    2120== [http://climateprediction.net/ Climateprediction.net] ==
    2221
    23 1. D. A. Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe & M. R. Allen, Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, pp. 403-406, January 2005.
    24 
    25 1. C. Piani, D. J. Frame, D. A. Stainforth, and M. R. Allen, Constraints on climate change from a multi-thousand member ensemble of simulations, Geophysical Review Letters, 32, December 2005.
    26 
    27 1. M. Collins and S. Knight (Eds.),  Ensembles and probabilities: a new era in the prediction of climate change, Phil. Trans. R. Soc. A, Print: 1364-503X, Online: 1471-2962, 2007.
    28 
    29 1. C.G. Knight, S.H.E. Knight, N. Massey, T. Aina, C. Christensen, D.J. Frame, J.A. Kettleborough, A. Martin, S. Pascoe, B. Sanderson, D.A. Stainforth, M.R. Allen, Association of parameter, software and hardware variation with large scale behavior across 57,000 climate models, PNAS, July 2007.
    30 
    31 1. D. J. Frame, N. E. Faull, M. M. Joshi & M. R. Allen,  Probabilistic climate forecasts and inductive problems, Philosophical Transactions of the Royal Society A,  2007.
     22 1. James Murphy, David Sexton, David Barnett, Gareth Jones, Mark Webb, Matthew Collins & David Stainforth, Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, pp. 768-772, August 2004.
     23 1. D. A. Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe & M. R. Allen, Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, pp. 403-406, January 2005.
     24 1. D. J. Frame, B. B. B. Booth, J. A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, and M. R. Allen, Constraining climate forecasts: The role of prior assumptions, Geophysical Review Letters, 32, May 2005.
     25 1. C. Piani, D. J. Frame, D. A. Stainforth, and M. R. Allen, Constraints on climate change from a multi-thousand member ensemble of simulations, Geophysical Review Letters, 32, December 2005.
     26 1. P. Pall, M.R. Allen, D.A. Stone, Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dynamics, 23:4, pp. 351-363, August 2006.
     27 1. M. Collins and S. Knight (Eds.),  Ensembles and probabilities: a new era in the prediction of climate change, Phil. Trans. R. Soc. A, Print: 1364-503X, Online: 1471-2962, 2007.
     28 1. C.G. Knight, S.H.E. Knight, N. Massey, T. Aina, C. Christensen, D.J. Frame, J.A. Kettleborough, A. Martin, S. Pascoe, B. Sanderson, D.A. Stainforth, M.R. Allen, Association of parameter, software and hardware variation with large scale behavior across 57,000 climate models, PNAS, July 2007.
     29 1. B. M. Sanderson, R. Knutti, T. Aina, C. M. Christensen, N. E. Faull, D. J. Frame, W. J. Ingram, C. Piani, D. A. Stainforth, D. A. Stone and M. R. Allen. Constraints on model response to greenhouse gas forcing and the role of sub-grid scale processes, Journal of Climate, in press, 2007.
     30 1. C. Piani, T. Aina, C. Christensen, D. Frame, N. Faull and M. Allen.  Regional probabilistic climate forecasts from a multi-thousand, multi-model ensemble of simulations, Journal of Geophysical Research, accepted, 2007.
     31 1. D. J. Frame, N. E. Faull, M. M. Joshi & M. R. Allen,  Probabilistic climate forecasts and inductive problems, Philosophical Transactions of the Royal Society A,  2007.
    3232
    3333== [http://boinc.umiacs.umd.edu/ Lattice] ==
    3434
    35 [20]    Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259-64 (2007).
    36 
    37 [21]    Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503-19  (2007).
    38 
    39 [22]    Misura KM, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. U.S.A. 103, 5361-6  (2006).
     35 1. Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259-64 (2007).
     36 1. Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503-19  (2007).
     37 1. Misura KM, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. U.S.A. 103, 5361-6  (2006).
    4038
    4139== [http://boinc.bakerlab.org/rosetta/ Rosetta@home] ==
    4240
    43 1. Rhiju Das, Madhuri Kudaravalli, Magdalena Jonikas, Alain Laederach, Robert Fong, Jason P. Schwans, David Baker, Joseph A. Piccirilli, Russ B. Altman, and Daniel Herschlag, Structural inference of native and partially folded RNA by high throughput contact mapping, PNAS, in press  (2008).
    44 
    45 1. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmström L, Wollacott AM, Wang C, Andre I, Baker D. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69 Suppl 8, 118-28 (2007).
    46 
    47 1. Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. Acad. Sci. U.S.A. 104, 14664-9 (2007).
    48 
    49 1. Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259-64 (2007).
    50 
    51 1. Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503-19  (2007).
    52 
    53 1. Misura KM, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. U.S.A. 103, 5361-6  (2006).
     41 1. Rhiju Das, Madhuri Kudaravalli, Magdalena Jonikas, Alain Laederach, Robert Fong, Jason P. Schwans, David Baker, Joseph A. Piccirilli, Russ B. Altman, and Daniel Herschlag, Structural inference of native and partially folded RNA by high throughput contact mapping, PNAS, in press  (2008).
     42 1. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmström L, Wollacott AM, Wang C, Andre I, Baker D. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69 Suppl 8, 118-28 (2007).
     43 1. Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. Acad. Sci. U.S.A. 104, 14664-9 (2007).
     44 1. Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259-64 (2007).
     45 1.  Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503-19  (2007).
     46 1. Misura KM, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. U.S.A. 103, 5361-6  (2006).
    5447
    5548== [http://setiathome.berkeley.edu SETI@home] ==
    5649
    57 1.  D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer. SETI@home: An Experiment in Public-Resource Computing.  Communications of the ACM, Vol. 45 No. 11, November 2002, pp. 56-61.
     50 1. Computing.  Communications of the ACM, Vol. 45 No. 11, November 2002, pp. 56-61.
    5851
    5952== [http://www.worldcommunitygrid.org/ World Community Grid] ==
    6053
    61 1. Max W. Chang, William Lindstrom, Arthur J. Olson, and Richard K. Belew .  Analysis of HIV Wild-Type and Mutant Structures via in Silico Docking against Diverse Ligand Libraries.  J. Chem. Inf. Model., 47 (3), 1258 -1262, 2007.
    62 
    63 1. Lars Malmström, Michael Riffle, Charlie E. M. Strauss, Dylan Chivian, Trisha N. Davis, Richard Bonneau, David Baker.  Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology.  PLoS Biol 5(4).
     54 1. Max W. Chang, William Lindstrom, Arthur J. Olson, and Richard K. Belew .  Analysis of HIV Wild-Type and Mutant Structures via in Silico Docking against Diverse Ligand Libraries.  J. Chem. Inf. Model., 47 (3), 1258 -1262, 2007.
     55 1. Lars Malmström, Michael Riffle, Charlie E. M. Strauss, Dylan Chivian, Trisha N. Davis, Richard Bonneau, David Baker.  Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology.  PLoS Biol 5(4).