Version 3 (modified by 12 years ago) (diff) | ,
---|
Specifying plan classes in C++
If you need more generality than is provided by XML-based plan class specification, you can specify plan classes in C++.
The scheduler is linked with a function
bool app_plan(SCHEDULER_REQUEST &sreq, char* plan_class, HOST_USAGE&);
The sreq argument describes the host. It contains:
- in sreq.host field, a description of the host's hardware, including:
- In p_vendor and p_model, the processor type
- In p_features, the processor features (e.g., fpu tsc pae nx sse sse2 mmx)
- In m_nbytes, the amount of RAM
- in sreq.coprocs, a list of the hosts's coprocessors.
- in core_client_version, the client's version number in MMmmRR form.
When called with a particular SCHEDULER_REQUEST and plan class, the function returns true if the host's resources are sufficient for apps of that class. If true, it populates the HOST_USAGE structure:
struct HOST_USAGE { double ncudas; // number of NVIDIA GPUs used double natis; // number of ATI GPUs used double gpu_ram; // max amount of GPU RAM used double avg_ncpus; // avg #CPUs used by app (may be fractional) double max_ncpus; // max #CPUs used (not currently used for anything) double projected_flops; // an estimate of the actual FLOPS. // used to select versions, so make it higher for the preferred version double peak_flops; // the peak FLOPS of the devices to be used char cmdline[256]; // passed to the app as a cmdline argument; // this can be used, e.g. to control the # of threads used };
You can define your own set of plan classes, and link your own app_plan() function with the scheduler. The BOINC scheduler comes with a default app_plan() (in sched/sched_customize.cpp).
Example: a plan class for multithread apps
Here's a plan class function for a multicore app that it achieves a linear speedup on up to 64 processors, and no additional speedup beyond that.
bool app_plan_mt( SCHEDULER_REQUEST& sreq, HOST_USAGE& hu ) { double ncpus = g_wreq->effective_ncpus; // number of usable CPUs, taking user prefs into account int nthreads = (int)ncpus; if (nthreads > 64) nthreads = 64; hu.avg_ncpus = nthreads; hu.max_ncpus = nthreads; sprintf(hu.cmdline, "--nthreads %d", nthreads); hu.projected_flops = sreq.host.p_fpops*hu.avg_ncpus*.99; // the .99 ensures that on uniprocessors a sequential app // will be used in preferences to this hu.peak_flops = sreq.host.p_fpops*hu.avg_ncpus; return true; }
Defining GPU plan classes
To define a new NVIDIA/CUDA plan class, add a new clause to app_plan_cuda() in sched/sched_customize.cpp. For example, the plan class cuda23 is defined by:
... if (!strcmp(plan_class, "cuda23")) { if (!cuda_check(c, hu, 100, // minimum compute capability (1.0) 200, // max compute capability (2.0) 2030, // min CUDA version (2.3) 19500, // min display driver version (195.00) 384*MEGA, // min video RAM 1., // # of GPUs used (may be fractional, or an integer > 1) .01, // fraction of FLOPS done by the CPU .21 // estimated GPU efficiency (actual/peak FLOPS) )) { return false; } }
To define a new ATI/CAL plan class, add a new clause to app_plan_ati(). For example:
if (!strcmp(plan_class, "ati14")) { if (!ati_check(c, hu, 1004000, // min display driver version (10.4) false, // require libraries named "ati", not "amd" 384*MEGA, // min video RAM 1., // # of GPUs used (may be fractional, or an integer > 1) .01, // fraction of FLOPS done by the CPU .21 // estimated GPU efficiency (actual/peak FLOPS) )) { return false; } }
To define a new OpenCL plan class, add a new clause to app_plan_opencl(). For example:
if (!strcmp(plan_class, "opencl_nvidia_101")) { return opencl_check( c, hu, 101, // OpenCL version (1.1) 256*MEGA, // min video RAM 1, // # of GPUs used .1, // fraction of FLOPS done by the CPU .21 // estimated GPU efficiency (actual/peak FLOPS) ); }