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The BOINC community

UC Berkeley
developers (2.5)

Projects PC volunteers
(300,000)

Other volunteers:
testing

translation
support

Computer scientists



  

Workshop goals

● Learn what everyone else is doing
● Form collaborations
● Steer BOINC development

– tell us what you want



  

Hackfest (tomorrow)

● Goal: get something concrete done
– Improve docs
– design and/or implement software
– learn and use a new feature



  

The state of volunteer computing

● Volunteers: stagnant
– BOINC: 290K people, 450K computers

● Science projects: stagnant
● Computer science research: stagnant
● Let’s keep trying anyway



  

Requests to projects

● Do outreach
– notices
– automated emails
– mass emails
– message boards
– mass media

● Use current server code



  

To developers/researchers

● Talk with me before starting anything, 
especially if it’s of general utility

davea@ssl.berkeley.edu



  

What’s new in BOINC?

● Storage and data-intensive computing
● Virtual machine apps
● GPU apps
● Scheduling
● Remote job submission
● Other



  

Storage and data-intensive 
computing

● Disk space
– average 50 GB available per client
– 35 Petabytes total

● Trends
– disk sizes increasing exponentially, faster than 

processors
– 1 TB * 1M clients = 1 Exabyte



  

BOINC storage architecture

Data archivalApplications
Locality scheduling

Dataset storage

BOINC storage
infrastructure

Result archival



  

BOINC storage infrastructure:
managing client space

● Volunteer prefs determines BOINC’s allocation
● Allocation to projects is based on resource 

share

Non-BOINC free BOINC



  

BOINC storage infrastructure:
RPC/server structure

home PC

BOINC
client

scheduler

project

scheduler

application-
specific logic

Project disk usage
Project disk share
List of sticky files

Desired space
Files to delete
Files to upload
Files to download

● “Sticky file” mechanism



  

Volunteer data archival

● Files originate on server
● Chunks of files are stored on clients
● Files can be reconstructed on server (with high 

latency)
● Goals:

– arbitrarily high reliability (99.999)
– support large files



  

Replication

● Divide file into N chunks
● Store each chunk on M clients
● If a client fails

– upload another replica to server
– download to a new client

● Problems
– high space overhead



  

Erasure Coding

● A way of dividing a file into N+K chunks

● The original file can be reconstructed from any 
N of these chunks.

● Example: N=40, K=20
– can tolerate simultaneous failure of 20 clients
– space overhead is only 50%

N = 4 K = 2



  

Problems with erasure coding

● When any chunk fails, need to upload all other 
chunks to server

● High network load at server
● High transient disk usage at server



  

Two-level coding

● Can tolerate K2 client failures
● Space overhead: 125%



  

Two-level coding + replication

● Most recoveries involve only 1 chunk
● Space overhead: 250%

M = 2



  

VDA Implementation

● DB tables
– vda_file
– vda_chunk_host

● Scheduler plugin
– handle transfers, sticky file list

● VDA daemon
– process files needing update, dead hosts

● Emulator
– compute performance metrics



  

Support for large files

● Restartable download of compressed files
– include <gzip/> in <file_info>
– currently only for app version files

● Combine uncompress, verify
● Asynchronous file copy, uncompress/verify

– 10MB threshold
● Handle > 2GB files; use stat64()



  

VM app support

BOINC
client

vbox
wrapper

virtual
machine

Vbox
service

shared
dir



  

VM app support

● Use Vbox “snapshot” mechanism for 
checkpointing

● Report non-ancestral PID (VM) to client
● Report network traffic to client
● Use Remote Desktop Protocol to allow user to 

view console
● CPU throttling
● Multicore



  

GPU app support

● Pass device type and number in init_data.xml
● OpenCL initialization: boinc_get_opencl_ids()
● Plan classes configurable in XML file



  

Scheduling: batch-level (proposed)

● Policy: feeder enumeration order
● Goals

– Give short batches priority over long batches
– But don’t let a stream of short batches starve 

long batches
– enforce user quotas over long term



  

Scheduling: batch-level

● Each user has “logical start time” LST(U)
– when submit batch, increment by expected 

runtime / share(U)
● Each batch has “logical end time” LET(B)

– set to LST(U) + expected runtime
● Give priority to batch for which LET(B) is least

logical time

user 1

user 2

batch

batch batchbatch

LST(U)

LST(U)

LET(B)



  

Scheduling: job-level

● Policies
– feeder enumeration order
– job selection from shared mem cache
– choice of app version
– deadline assignment

● QoS types
– non-batch, throughput-oriented
– Long-deadline batches
– As fast as possible (AFAP) batches
– short-deadline batches



  

Scheduling: job-level

● Goals
– accelerate batch completion
– avoid tight job deadlines
– avoid long delays between instances
– minimize server configuration



  

Scheduling: job-level

● For each (host, app version) maintain percentile 
incorporating

– average turnaround time
– consecutive valid results

● Dynamic batch completion estimation
– based on completed and validated jobs



  

Scheduling: job-level

● Feeder enumeration order
– LET(J) ascending, # retries descending



  

Scheduling: job-level

● For each job
– for each usable app version AV

● if x < est_completion(B)
– send job using AV with deadline est_completion(B)

● else if percentile(H, AV) > 90%
– send job using AV with deadline x

batch
created now x est_comp(B)

busy est RT



  

Locality scheduling

● Have a large dataset
● Each file in the dataset is input for a large 

number of jobs
● Goal: process the dataset using the least 

network traffic
● Example: Einstein@home analysis of LIGO 

gravity-wave detector data



  

Locality scheduling

● Processing jobs sequentially is pessimal
– every file gets sent to every client

jobs jobs
. . .

PCs



  

Locality scheduling: ideal

● Each file is downloaded to 1 host
● Problems

– Typically need job replication
– Widely variable host throughput

jobs jobs

PCs

jobs jobs



  

Locality scheduling: proposed

jobs jobs

teams

jobs jobs



  

Locality Scheduling Lite

● Optional feature of existing scheduler
● Use when # files < # shared-mem slots



  

Remote job submission

● Operations
– estimate, submit, query, abort, get result files, 

retire

BOINC
server

Portal
web site

PHP API

cmdline
tools

HTTPS/XML



  

Remote job submission

● Input file options
– local: file already exists on server
– inline: file is passed in request XML
– semilocal: file is accessible via HTTP from 

server; server fetches and serves it
– remote: file is on a server accessible to clients; 

must supply size and MD5



  

Broadcast and targeted jobs

● Broadcast jobs
– run once on all hosts, present and future
– can limit to user or team
– Not handled by validator or assimilator

● Targeted jobs
– targeted to a host, user, or team
– handled by validator, assimilator
– can do this when create job, or dynamically



  

Git migration

● Branches
– master (development)

● new code goes here
– server_stable

● hot fixes may go here
– client_release_X_Y

● hot fixes may go here



  

Other things for CERN T4T

● Web-based app graphics
– app implements an HTTP server
– port is conveyed to Manager
– “app graphics” opens a browser window

● “need network” app version flag
– don’t run if network not available



  

New OS support

● Windows 8
● Mac OS X 10.8

– Xcode 4.5
● Debian 6.0
● Android



  

Large DB IDs

● SETI@home has done > 2B jobs
● made IDs unsigned (31->32 bits)
● eventually will need to move to 64 bit



  

Validator

● Runtime outlier flag
– don’t use this job in runtime, credit statistics

● Test harness
– validator_test file1 file2



  

BOINC in app stores

● Operated by OS vendors (Apple, MS, Google)
● Vendor screen apps and takes a cut
● Goal: package BOINC for app stores

– and maybe project-specific versions



  

Didn’t get done

● OpenID support
● remodel computing preferences
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