

The 8The 8thth Annual BOINC Workshop Annual BOINC Workshop

London, EnglandLondon, England
27-28 Sept. 201227-28 Sept. 2012

http://boinc.berkeley.edu/trac/wiki/WorkShop12http://boinc.berkeley.edu/trac/wiki/WorkShop12

The BOINC community

UC Berkeley
developers (2.5)

Projects PC volunteers
(300,000)

Other volunteers:
testing

translation
support

Computer scientists

Workshop goals

● Learn what everyone else is doing
● Form collaborations
● Steer BOINC development

– tell us what you want

Hackfest (tomorrow)

● Goal: get something concrete done
– Improve docs
– design and/or implement software
– learn and use a new feature

The state of volunteer computing

● Volunteers: stagnant
– BOINC: 290K people, 450K computers

● Science projects: stagnant
● Computer science research: stagnant
● Let’s keep trying anyway

Requests to projects

● Do outreach
– notices
– automated emails
– mass emails
– message boards
– mass media

● Use current server code

To developers/researchers

● Talk with me before starting anything,
especially if it’s of general utility

davea@ssl.berkeley.edu

What’s new in BOINC?

● Storage and data-intensive computing
● Virtual machine apps
● GPU apps
● Scheduling
● Remote job submission
● Other

Storage and data-intensive
computing

● Disk space
– average 50 GB available per client
– 35 Petabytes total

● Trends
– disk sizes increasing exponentially, faster than

processors
– 1 TB * 1M clients = 1 Exabyte

BOINC storage architecture

Data archivalApplications
Locality scheduling

Dataset storage

BOINC storage
infrastructure

Result archival

BOINC storage infrastructure:
managing client space

● Volunteer prefs determines BOINC’s allocation
● Allocation to projects is based on resource

share

Non-BOINC free BOINC

BOINC storage infrastructure:
RPC/server structure

home PC

BOINC
client

scheduler

project

scheduler

application-
specific logic

Project disk usage
Project disk share
List of sticky files

Desired space
Files to delete
Files to upload
Files to download

● “Sticky file” mechanism

Volunteer data archival

● Files originate on server
● Chunks of files are stored on clients
● Files can be reconstructed on server (with high

latency)
● Goals:

– arbitrarily high reliability (99.999)
– support large files

Replication

● Divide file into N chunks
● Store each chunk on M clients
● If a client fails

– upload another replica to server
– download to a new client

● Problems
– high space overhead

Erasure Coding

● A way of dividing a file into N+K chunks

● The original file can be reconstructed from any
N of these chunks.

● Example: N=40, K=20
– can tolerate simultaneous failure of 20 clients
– space overhead is only 50%

N = 4 K = 2

Problems with erasure coding

● When any chunk fails, need to upload all other
chunks to server

● High network load at server
● High transient disk usage at server

Two-level coding

● Can tolerate K2 client failures
● Space overhead: 125%

Two-level coding + replication

● Most recoveries involve only 1 chunk
● Space overhead: 250%

M = 2

VDA Implementation

● DB tables
– vda_file
– vda_chunk_host

● Scheduler plugin
– handle transfers, sticky file list

● VDA daemon
– process files needing update, dead hosts

● Emulator
– compute performance metrics

Support for large files

● Restartable download of compressed files
– include <gzip/> in <file_info>
– currently only for app version files

● Combine uncompress, verify
● Asynchronous file copy, uncompress/verify

– 10MB threshold
● Handle > 2GB files; use stat64()

VM app support

BOINC
client

vbox
wrapper

virtual
machine

Vbox
service

shared
dir

VM app support

● Use Vbox “snapshot” mechanism for
checkpointing

● Report non-ancestral PID (VM) to client
● Report network traffic to client
● Use Remote Desktop Protocol to allow user to

view console
● CPU throttling
● Multicore

GPU app support

● Pass device type and number in init_data.xml
● OpenCL initialization: boinc_get_opencl_ids()
● Plan classes configurable in XML file

Scheduling: batch-level (proposed)

● Policy: feeder enumeration order
● Goals

– Give short batches priority over long batches
– But don’t let a stream of short batches starve

long batches
– enforce user quotas over long term

Scheduling: batch-level

● Each user has “logical start time” LST(U)
– when submit batch, increment by expected

runtime / share(U)
● Each batch has “logical end time” LET(B)

– set to LST(U) + expected runtime
● Give priority to batch for which LET(B) is least

logical time

user 1

user 2

batch

batch batchbatch

LST(U)

LST(U)

LET(B)

Scheduling: job-level

● Policies
– feeder enumeration order
– job selection from shared mem cache
– choice of app version
– deadline assignment

● QoS types
– non-batch, throughput-oriented
– Long-deadline batches
– As fast as possible (AFAP) batches
– short-deadline batches

Scheduling: job-level

● Goals
– accelerate batch completion
– avoid tight job deadlines
– avoid long delays between instances
– minimize server configuration

Scheduling: job-level

● For each (host, app version) maintain percentile
incorporating

– average turnaround time
– consecutive valid results

● Dynamic batch completion estimation
– based on completed and validated jobs

Scheduling: job-level

● Feeder enumeration order
– LET(J) ascending, # retries descending

Scheduling: job-level

● For each job
– for each usable app version AV

● if x < est_completion(B)
– send job using AV with deadline est_completion(B)

● else if percentile(H, AV) > 90%
– send job using AV with deadline x

batch
created now x est_comp(B)

busy est RT

Locality scheduling

● Have a large dataset
● Each file in the dataset is input for a large

number of jobs
● Goal: process the dataset using the least

network traffic
● Example: Einstein@home analysis of LIGO

gravity-wave detector data

Locality scheduling

● Processing jobs sequentially is pessimal
– every file gets sent to every client

jobs jobs
. . .

PCs

Locality scheduling: ideal

● Each file is downloaded to 1 host
● Problems

– Typically need job replication
– Widely variable host throughput

jobs jobs

PCs

jobs jobs

Locality scheduling: proposed

jobs jobs

teams

jobs jobs

Locality Scheduling Lite

● Optional feature of existing scheduler
● Use when # files < # shared-mem slots

Remote job submission

● Operations
– estimate, submit, query, abort, get result files,

retire

BOINC
server

Portal
web site

PHP API

cmdline
tools

HTTPS/XML

Remote job submission

● Input file options
– local: file already exists on server
– inline: file is passed in request XML
– semilocal: file is accessible via HTTP from

server; server fetches and serves it
– remote: file is on a server accessible to clients;

must supply size and MD5

Broadcast and targeted jobs

● Broadcast jobs
– run once on all hosts, present and future
– can limit to user or team
– Not handled by validator or assimilator

● Targeted jobs
– targeted to a host, user, or team
– handled by validator, assimilator
– can do this when create job, or dynamically

Git migration

● Branches
– master (development)

● new code goes here
– server_stable

● hot fixes may go here
– client_release_X_Y

● hot fixes may go here

Other things for CERN T4T

● Web-based app graphics
– app implements an HTTP server
– port is conveyed to Manager
– “app graphics” opens a browser window

● “need network” app version flag
– don’t run if network not available

New OS support

● Windows 8
● Mac OS X 10.8

– Xcode 4.5
● Debian 6.0
● Android

Large DB IDs

● SETI@home has done > 2B jobs
● made IDs unsigned (31->32 bits)
● eventually will need to move to 64 bit

Validator

● Runtime outlier flag
– don’t use this job in runtime, credit statistics

● Test harness
– validator_test file1 file2

BOINC in app stores

● Operated by OS vendors (Apple, MS, Google)
● Vendor screen apps and takes a cut
● Goal: package BOINC for app stores

– and maybe project-specific versions

Didn’t get done

● OpenID support
● remodel computing preferences

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

