

3 Prime Tests, 3 Factorization Algorithms &
BOINC

Mathematics → Number Theory → Computational
 Number Theory → Primality Testing &

Factorization

Primality Testing:
Is a given integer prime?

ie exactly divisible only by itself and 1, eg 7

Integer Factorization:
Find a (unique) list of all the (prime) divisors of a

given integer
eg 15=3*5

Naïve prime test:
Trial divide by all integers up to square root

Naïve factorization algorithm:
Trial divide by all integers up to square root

Running time of naïve prime test: exponential =
kn^(1/2)

(Storage space required negligible)

Running time of naïve factorization algorithm:
exponential = kn^(1/2)

(Storage space required negligible)

Fermat's Little Theorem:
a^p = a [mod p]

ie for p prime, raising any integer, a, to power p
and subtracting a will give a result divisible by p

Converse:
a^n = a [mod n] => n prime
Often, but NOT always true

Russian Peasant exponentiation:
Exponentiation by squaring ie binary ladder

eg consider a^8 = ((a^2)^2)^2
Running time: polynomial = kln(n)

Fermat probable (pseudo-)prime test (NOT
deterministic)

Implementations in NT packages common

Wanless' factorization algorithm (unproven)
we2tr34.cpp

& BOINC: WEP-M+2 (+ others?!)

Running time of Fermat pseudoprime test:
polynomial = kln(n)

(Storage space required negligible)

Running time of Wanless' factorization algorithm:
polynomial = kln(n)

(Storage space required negligible)

Pocklington primality test (deterministic)
Relies on (partial) factorization of p-1 to generate

recursive list of successive p
(uses Fermat's little theorem)

(isn't always able to work)

Pollard factorization algorithm
Relies on (complete) factorization of p-1, with p

being factor to find
(uses Fermat's little theorem)

(isn't always able to work easily)

Elliptic Curves
Way of introducing controlled variation into the

system, essentially mapping a geometric
transform wrt a cubic equation (eg y^2=x^3+ax+b)

ECPP primality test (from Pocklington)

ECM factorization algorithm (from Pollard)

Running time of ECPP test: polynomial = kln(n)^4
(Storage space required negligible)

Running time of ECM factorization algorithm: near
polynomial

(Storage space required negligible)

ECPP Implementations
Windows: Primo

Linux: ECPP (Morain)
Mac (+W/L): GMP-ECPP (open source)

ECM Implementations
ecm15.cpp (tutorial)

(M/W/L): GMP-ECM (open source)

ECPP & BOINC (general test)
PrimeGrid?

ECM & BOINC
yoyo@home

(record 68-digit factor)

mailto:yoyo@home

3 Prime Tests, 3 Factorization
Algorithms & BOINC

● Naïve factorization
algorithm

● Pollard factorization
algorithm (FLT)

● ECM (elliptic curves) (
yoyo@home)

● Wanless factorization
algorithm (WEP-M+2)

● Naïve prime test
● Pocklington prime

test (FLT)
● ECPP (elliptic curves)
● Fermat pseudoprime

test

mailto:yoyo@home

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

