

S

Finding Radio Pulsars with Einstein@Home

B. Knispel, B. Allen, C. Aulbert, O. Bock, H. Fehrmann, B. Machenschalk, C. Messenger, M. A. Papa, H. J. Pletsch, R. Prix and the PALFA consortium

massive star remnants

- •>1.4 M_{sun} atomic nucleus: ~20 km diameter
- strong field gravity: R_{Schwarzschild} = 0.3 R_{NS}
- strong magnetic fields: 10⁸ to 10¹⁴ G
- lighthouse-like emission
 - magnetic field + fast rotation
- first discovered: 1967 by Bell and Hewish
 - 1/8 Hz to 761 Hz spin frequency
 - 1900 radio pulsars known
 - 140 in **binary systems**, detection of short orbits limited by computational power
 - GR testbed

massive star remnants

- •>1.4 M_{sun} atomic nucleus: ~20 km diameter
- strong field gravity: R_{Schwarzschild} = 0.3 R_{NS}
- strong magnetic fields: 10⁸ to 10¹⁴ G
- lighthouse-like emission
 - magnetic field + fast rotation
- first discovered: 1967 by Bell and Hewish
 - 1/8 Hz to 761 Hz spin frequency
 - 1900 radio pulsars known
 - 140 in **binary systems**, detection of short orbits limited by computational power
 - GR testbed

Arecibo Observatory

• Arecibo Observatory (AO) Puerto Rico

- **305 m dish:** world's largest radio telescope
 - astronomy and atmospheric science
- PALFA consortium: pulsar survey with 7-pixel "camera"
- share data for analysis, data taking since 2005
- analysis: 3 different pipelines
 - most difficult: detection of close binary systems

Arecibo Observatory

• Arecibo Observatory (AO) Puerto Rico

- **305 m dish:** world's largest radio telescope
 - astronomy and atmospheric science
- PALFA consortium: pulsar survey with 7-pixel "camera"
- share data for analysis, data taking since 2005
- analysis: 3 different pipelines
 - most difficult: detection of close binary systems

Binary Radio Pulsar Search

- 270,000 volunteers with 1.8 million computers, 300 Tflop/s total computing power
- •65% (195 Tflop/s) gravitational wave (GW) search
- 35% (105 Tflop/s) radio pulsar search:
 - launched in March 2009
 - make discoveries to keep volunteers happy
 - re-use tools from GW search
 - i) parameter space metric
 - ii) random and stochastic template bank
 - iii) new coordinates for post-processing

Binary Radio Pulsar Search

- 270,000 volunteers with 1.8 million computers, 300 Tflop/s total computing power
- •65% (195 Tflop/s) gravitational wave (GW) search
- 35% (105 Tflop/s) radio pulsar search:
 - launched in March 2009
 - make discoveries to keep volunteers happy
 - re-use tools from GW search
 - i) parameter space metric
 - ii) random and stochastic template bank
 - iii) new coordinates for post-processing

building a stochastic template bank

Data Analysis

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

Data Analysis

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

Data Analysis

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - template bank: orbital parameters (P_{orb} > I I min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - •template bank: orbital parameters (Porb > 11 min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

Data Analysis

- distance (dispersion)
- orbital parameters
- spin frequency
- Einstein@Home binary pulsar search:
 - data archive at Cornell, transfer to AEI Hannover
- E@H servers: dedispersion
- •volunteers' computers:
 - •template bank: orbital parameters (P_{orb} > | | min)
 - demodulation in time domain
 - Fourier transform + "harmonic summing"
- postprocessing: new coordinates + clustering

• First pulsar discovery by global volunteer computing (Science Express, Aug 12)

•volunteers: C. and H. Colvin (Ames, Iowa, USA) and D. Gebhardt (Mainz, Germany)

• July 11: candidate in data from Feb 2007, confirmation on Jul 13

• observations: AO (Puerto Rico), Westerbork (Netherlands), GBT (United States), Effelsberg (Germany), Jodrell Bank (United Kingdom)

• **spin:** f = 40.820677620(6) Hz

- •unusual low-f pulsar
- remarkable pulse profile

• First pulsar discovery by global volunteer computing (Science Express, Aug 12)

•volunteers: C. and H. Colvin (Ames, Iowa, USA) and D. Gebhardt (Mainz, Germany)

• July 11: candidate in data from Feb 2007, confirmation on Jul 13

• observations: AO (Puerto Rico), Westerbork (Netherlands), GBT (United States), Effelsberg (Germany), Jodrell Bank (United Kingdom)

• **spin:** f = 40.820677620(6) Hz

•unusual low-ḟ pulsar

• remarkable pulse profile

BOINC Workshop 2010, London, Aug 31

BOINC Workshop 2010, London, Aug 31