
Virtualization for Desktop Grid Clients

Marosi Attila Csaba

atisu@sztaki.hu

BOINC Workshop’09, Barcelona, Spain, 23/10/2009

•! Joint work with Gilles Fedak (INRIA) and Oleg Lodygensky
(IN2P3)

•! Carried out in the frame of a CoreGRID Researcher
Exchange Programme

•! Idea came after the 3rd BOINC Workshop (BOF on virtual
machines

•! Work was done in November-December 2007

•! 5 weeks total at INRIA, Orsay, France

•! A technical report was published with the results in June
2008

•! Was a long time ago, but I think it might be still interesting…

“Using Virtual Machines in Desktop Grid Clients for
Application Sandboxing”

•! “Provide a checkbox in the BOINC Manager which enables
the execution of any application inside a Virtual Machine
(sandbox).”

•! Usable by any deployed application

•! Should not require to install any additional libraries

•! Should be integrated with the client

•! Should not interfere with the daily work of the user

•! “Should be a general solution that can be integrated with
different DG middlewares.”

•! In our case at least with XtremWeb (INRIA, IN2P3) and
BOINC (SZTAKI)

Goals 1/2

•! “The solution should be primary aimed at Volunteer
Computing projects.”

•! Applications with little or no external dependencies (when
possible)

•! To avoid large VM images

•! CPU intensive applications

•! Most likely Windows hosts, but should run also on Linux
and Mac OS X

•! These characteristics can be also true for some
commercial applications…

•! E.g. the applications of CancerGrid

Goals 2/2

•! Simplified application development

•! A binary for a single platform (preferably Linux) is enough

•! Applications with many dependencies can be run

•! Legacy applications

•! Applications without source code can be run on BOINC

•! System-level checkpoint

•! VMs can be suspended, checkpointed, resumed

•! No need to implement it at the application level

•! Enforce resource limits

•! Isolation

Benefits - motivation

•! Bochs

•! Emulator implemented in C++

•! QEMU

•! Processor emulator

•! KQEMU

•! Extension for QEMU to improve performance

•! VMWare Player

•! VirtualBox

Considered virtualization tools

•! Transparency for the system

•! Should work “out of the box” with already deployed
Desktop Grids

•! Should not constrain any restrictions to applications
when using the VM

•! Checkpoint and resume, suspend and continue,
measure and report the used CPU time and
fraction done

•! Transparency for the user

•! No special knowledge or preparation should be
required for deployment

•! Should not interfere with the daily routine of the
volunteer

Requirements for virtualization tools 1/4

•! Isolation

•! Applications running in the VM should not have any
possibility for outside contact

•! Network access, accessing the files on the host, etc.

•! Backdoor

•! Should be a method for accessing files inside the VM

•! Still no access to outside world for the guest

•! e.g. QEMU allows to forward a port from the guest to a
socket at the host (without networking at the guest)

•! Cross-platform

•! Should run on Windows, Linux, Mac OS X

Requirements for virtualization tools 2/4

•! Instantiation

•! More than one VM could be running at a time

•! Duplicate images for each VM should be avoided

•! Using overlay images

•! Failure-tolerant (“bullet-proof”)

•! No malicious application or task may render the VM
unusable for future tasks

•! Creating and reverting to snapshots

•! Using overlay images

•! Performance

•! Performance penalty for using the VM should be low

Requirements for virtualization tools 3/4

•! Background (“headless execution”)

•! Should not present windows, pop-ups or a graphical
display, should run in the background

•! Licensing

•! Should be open source e.g. GPL, LGPL, BSD, Apache,
etc.

Requirements for virtualization tools 4/4

Comparison

Comparison

•! VM images are big – create them on the spot

•! Distribute a base image, and inject the input files on
the client

•! Use overlay images for fault tolerance

•! Define and use atomic commands for VM control and
task execution

•! libvirt was considered, too complex, functionality
was missing

•! Use an existing protocol, e.g. http or ssh

•! http already has PUT, GET to store and retrieve
files

General ideas

Architecture – with BOINC

B
O

IN
C

 c
o

r
e

 c
li

e
n

t
!

Start! Create!

Disk I/O!

TASK!

start!
stop!
ping!
get!
put!
delete!
msg_to_host!
msg_to_guest!
ls!
mkdir!

 VM!

create!
load!

suspend!
resume!

start!

stop!
checkpoint!

continue!
destroy!

Architecture – with BOINC

B
O

IN
C

 c
o

r
e

 c
li

e
n

t
!

Start! Create!

Disk I/O!

TASK!

start!
stop!
ping!
get!
put!
delete!
msg_to_host!
msg_to_guest!
ls!
mkdir!

 VM!

create!
load!

suspend!
resume!

start!

stop!
checkpoint!

continue!
destroy!

•! “High-level” C/C++ API to control task execution and VMs

•! vm_sb_* functions for task execution

•! start, stop, put, get, ping, delete,
msg_to_host, msg_to_guest, ls, mkdir

•! Communication daemon on the guest side

•! vm_* functions for VM control

•! create, load, suspend, resume, start,
stop, checkpoint, continue, destroy,
get_status

•! VM Manager provides these functions

Architecture - VM API

•! “Low-level” component for managing VM images

•! Performs operations requested by the VM API

•! create, load, suspend, resume, start,
stop, checkpoint, continue, destroy,
get_status

•! VM Base Images store default Linux OS and components
that are required to run by the guest OS

Architecture - VM Manager 1/2

Start!

Create!

 VM!

create!
load!

suspend!
resume!

start!

stop!
checkpoint!

continue!
destroy!

get_status!

•! Communications Daemon, *
Handler, Execution Environment

•! Overlay images are created for VM
instances – all disk I/O goes here

•! Thrown away after task finishes

•! Metadata stored in a SQLite
database

•! Controls the VM via the monitor of
QEMU (concept from libvirt)

•! monitor is bound to a socket

•! works like a terminal

•! send a command

•! if we get a prompt success

•! VM Base image

•! Debian Linux

•! Compressed QCOW2 format

•! ~350MB

•! Instance image ~50-150MB

Architecture - VM Manager 2/2

•! Handles task specific commands

•! Embedded HTTP server, receives messages from host

•! start, stop, put, get, ping, delete,
msg_to_host, msg_to_guest, ls, mkdir

•! implemented over HTTP PUT/ GET/ POST

•! QEMU allows to forward a TCP port in the guest to a TCP
port on the host – modified QEMU to map to a socket on the
guest when available

Architecture – Communication Daemon

•! All communication is
initiated by the host,
guest only responds

Architecture – Message Handler, Data Handler,
Execution Environment

•! Execution Environment

•! Starts application in a work directory - can be removed
and recreated at the end of each task

•! Environment variables set

•! Command line parameters

•! Data Handler, Message Handler

•! Implement
functionalities for
the available
commands

•! Checkpoint/ Resume

•! Provided by the VM (QEMU)

•! Multiple checkpoints can be stored in a single overlay
image

•! Suspend/ Continue

•! Provided by the VM (QEMU)

•! Measure CPU time

•! QEMU instance is a single process, we can measure its
used CPU time directly (is not implemented)

•! Report fraction done

•! Using msg_to_host (is not implemented)

•! Enforce resource limits (CPU, disk)

•! Provided by the VM (QEMU)

How to Implement BOINC functionalities ?

•! We wanted to know

•! How big is the CPU overhead of the virtualization (QEMU)

•! How does lowering the priority of the VM instance
process affects performance and responsibility of the host
system

•! We run a test – execute a work unit in the VM while
performing daily routine-work on the host

•! Was editing a PowerPoint presentation

•! Each part of the test was run 20 times

•! Application “BinSYS” from SZTAKI Desktop Grid

•! Host: Pentium IV 2.53GHz CPU, 1GB RAM, Windows XP

•! Guest: 160MB RAM, Debian Linux

Performance – Intrusiveness 1/2

•! “Normal priority” – Noticeable slowdown in the host,
especially when disk i/o

•! “Below normal priority” – No slowdown

•! Without the KQEMU component, the execution was extremly
slow

Performance – Intrusiveness 2/2

Type Slowest Fastest Average

Native Linux 711.06 sec 708.17 sec 710.20 sec

Windows host, Linux guest, QEMU normal

priority, with KQEMU

747.56 sec 744.21 sec 745.12 sec

Windows host, Linux guest, QEMU below

normal priority, with KQEMU

759.76 sec 757.60 sec 758.71 sec

•! “Prototype” - It works, but…

•! Parts of the High-level VM API are missing

•! Integration with the BOINC Client is missing

•! Part of a proposal for an EU funded project due to start in
2010

•! Technical report available at http://boinc.berkeley.edu/trac/
wiki/VmApps

Status and future work

•! Workflows are executed

•! Consist of legacy applications using GenWrapper
(BOINC)

•! CPU intensive applications

•! Consortium of academic and industrial partners

•! Consortium members donate CPU time

•! Office computers running Windows

•! Increased security would be more than welcomed by
Administrators…

Usage in the CancerGrid project

If you need more detailed (technical) information,
email to desktopgrid@lpds.sztaki.hu or

visit www.desktopgrid.hu

Thank you for your attention!

Questions?

Acknowledgement:

CancerGrid EU FP6 project (FP6-2005-LIFESCTHTALTH-7)

http://www.cancergrid.eu

