Computing over the Internet: Beyond Embarrassingly Parallel Applications

BOINC Workshop 09

Barcelona

Fernando Costa

Overview

- Motivation
- Computing over Large Datasets
- Supporting new Applications
 - MapReduce over the Internet
 - Scientific Workflows
- Conclusion

Motivation

- Volunteer Computing potential increasing
 - PS3, GPU
 - PCs have increased network and storage capabilities
- Limited to embarrassingly parallel apps
 - Master/worker model
- Limitations/Problems with current model

Motivation - Problems

- Current Projects
 - Centralized architecture
 - Data distribution limitations
 - Storage problems
- Not many new projects
 - HPC stonewalled VC
 - New types of applications needed to reach new projects

Unable to take advantage of VC full potential

Goals

- Apply P2P techniques to solve scalability problems in current Volunteer Computing projects
- Introduce storage layer as support for new computing paradigms and application types
 - Allow new projects to use internet-wide computing
- Provide mechanisms to handle more demanding applications
 - Adapt existing Grid applications
 - Support data-intensive applications
 - Jobs with dependencies

Computing over large Datasets

- Amazon Model
 - Store large datasets for free
 - Clients pay for computation and storage used by their applications
- How to adapt to BOINC?
 - Take advantage of previous work with BitTorrent

Previous Work

- Improve data distribution
- BitTorrent
 - Shared input files
 - Proposal for a Collaborative
 CDN
- Super-peer organization (P2P-ADICS)
 - Data Centers
 - Data Lookup Service: DHT with volunteers

Computing over large Datasets

- BOINC + BitTorrent library
- Wrapper to set BitTorrent as read-only filesystem
- Use large datasets as inputs
- Possible command sequence:
 - fd = open(tracker, objID)
 - read(fd, buffer, offset, len)

BOINC + BT model

fd = open(tracker, objID)
read(fd, buffer, offset, len)

BOINC + BT

Advantages

- Easy to implement as first version
- Allows initial testing to evaluate the solution
- Possible to add read/write support
- Next step: large outputs or intermediate results as inputs

Problem

- Assumes inter-client communication...
 - Solution: Guarantee that at least N% are accessible (public IP)
 - Communication over UDP hole punching techniques
 - Turn this into a super-peer scenario?

New Applications on BOINC

- Build over storage layer
 - Leverage direct transfers
 - Export information for applications
- MapReduce over the Internet
 - Wider use, but harder to find application
- Scientific Workflows
 - Not too complex for a VC environment

New Applications - MapReduce

- MapReduce over the Internet
 - Adapt "Hadoop" to internet-wide computing
 - Volunteer Cloud Computing?
- Problems with typical applications...

MapReduce over Internet

- Applications that would fit
 - Lower Communication Computation ratio
 - Longer running time
 - Lower latency requirements
 - More shared files
 - Volunteer genomic computations ?
- MapReduce Workflows
- Separate Dimensions

New Applications - Workflows

- New types of applications
 - Data-intensive applications
 - E.g.: Handle CERN data-intensive computations
 - Workflow
 - Extremely variable characteristics: long or short running, data-intensive or compute-intensive

New Applications – Current Work

- Handling new applications
 - Science Workflows
- Volunteer storage system
 - Store intermediate results and final output
- Two alternatives
 - Data stored in all nodes: metada in central server
 - Chosen nodes act as data centers

Current Work - Cliques

- Clique
 - Complete graph: each peer is connected to every node
- Building the overlay/P2P system
 - Peers replicate data between themselves
- Event-driven Simulator

Current Work - Cliques

- Advantages
 - More resources; Higher availability; Higher transfer speed;
- Disadvantages
 - Connectivity; Security; Upload bandwidth restrictions;
- New Issues
 - Accountability
 - Byzantine and selfish/rational behaviour
 - Fault Tolerance
 - Security
 - Authorization
 - Authentication

Supporting New Applications

- Problem
 - How to find a suitable application?
 - Current Focus
 - Virtual machines, GPU and multiprocessor applications
- Build around existing application
 - Don't develop system that may never be used…
- No requests for computing against large datasets or workflow apps
- Solution: Collaborations with existing/new projects

Conclusion

- Current Work
 - Building Volunteer Storage Platform
 - Wrapper to use BT as read-only file system
- Leveraging the Storage Layer
 - Working on simulator that uses Cliques to support workflows
 - MapReduce Paradigm
 - Data-intensive applications
 - Combining with virtualization: Volunteer Cloud Computing?
- Finding partners
 - Research is meaningless unless it is advantageous to SOMEONE