

Future Directions for Einstein @Home

Bruce Allen

Overview of Einstein@Home

- Launched in 2005. Work done at the Albert Einstein Institute and the University of Wisconsin.
- Science: search for *gravitational waves* from rapidly spinning neutron stars, using data from an international detector network.
- **Users**: typically about 60 000 active hosts.
- **BOINC Setup**: standard, but with "locality scheduling" features enabled.
- **First formal publication**: appearing in Physical Review D later this month.

What are we looking for? Neutron Stars

- Predicted by Chandrasekhar in 1930 and discovered by accident in 1967.
- Formed in explosion (supernova) at the end of the life of an ordinary star.
- Protons and electrons of ordinary matter 'crushed together' to form a 'giant atomic nucleus' made of neutrons.
- Neutron stars have masses similar to our Sun but a radius of only about 10 km! They can spin very rapidly (> 700 rotations/second).
- Very strong gravity: "almost" a black hole. Light can still escape, but barely!.
- A few thousand are visible as 'radio pulsars' but our Galaxy is expected to contains hundreds of millions.
- Rapidly spinning neutron stars should emit gravitational waves. These are known to be weak, but we do not know **how** weak.

Crab Nebula (1054 AD) R = 12 km, P = 33 msec,

What are Gravitational Waves?

- In Einstein's theory of General Relativity, mass and energy curve the geometry of space-time.
- If rapidly spinning neutron stars have small bumps or "mountains" then they can produce "ripples" in the geometry of space-time which travel outwards from the star at the speed of light.
- Einstein predicted their existence in 1916. He estimated the ampitude of these waves and concluded that they were too weak to detect.
- Einstein was wrong about this: in the coming years we will detect these wave directly!

The most sensitive gravitational wave detectors

All became operational during the past ten years.

BOINC Workshop Grenoble 11.9.2008

Past and Current Einstein@Home Searches

- LIGO S3 data (600 hours)
 60 x 10 hours coherent integration Results presented on-line. No detections.
- LIGO S4 data (510 hours) 17 x 30 hours coherent integration Results paper completed in May 2007, just appearing now No detections.
- LIGO S5 data (840 hours)
 28 x 30 hours coherent integration
 First search (S5R1) completed about one year ago.
 Post-processing finished, results under review in LIGO Scientific Collaboration.
- LIGO S5 data (3618.5 hours) 84 x ~40 hours coherent integration Search just finishing now (S5R3) and post-processing starting First search using the best available incoherent combination method
- LIGO S5 data (5280 hours) 121 x ~40 hours coherent integration Search just starting now (S5R4)

What's Coming?

- Gravitational wave detectors are getting better.
 - 2009, LIGO S6 (factor of two improvement)
 - 2013, Advanced LIGO (another factor of five improvement)
- Soon hope to have Graphics Processing Unit (GPU) code available for Nvidia graphics cards, giving an order-of-magnitude improvement in processing speed. This should allow longer coherent integration times, increasing the sensitivity
- We will provide all the screensaver code nicely packaged so that users can modify it or write their own. Based on new SDL graphics library (no more GLUT).
- Discussions within the LSC about also packaging the science code to allow users to do additional optimizations
- Searches for radio pulsars in short-period binaries, using radio data from Arecibo

Search for radio pulsars in short period binaries

Science Motivation

- Current searches for radio pulsars lose sensitivity when orbital period < 50 minutes
- But our Galaxy should contain binary neutron stars with periods as short as 4 6 minutes!
- These short-period systems have high orbital velocities, which magnifies relativistic effects
- Important for gravitational physics: predict Galactic binary inspiral rates; LISA calibration sources
- We have developed a (computationally expensive) detection technique for stars in binaries with periods > 10 minutes

Data source: Arecibo PALFA

Psychological Motivation

 Hope to find new relativistic pulsars on an annual basis. These discoveries should be exciting for Einstein@Home volunteers and help in retaining and attracting them

- Radio pulsar search workunits will be shorter (~ 4 hours) and use smaller data sets (2MB) than current Einstein@Home gravitational wave searches. And the data sets are only used once!
- Mixture of locality and non-locality scheduling
- Should we let users control the mixture of workunits?