
Coordinating Volunteer Computing

David P. Anderson

Space Sciences Laboratory

University of California, Berkeley

Berkeley California USA

davea@berkeley.edu

ABSTRACT
Volunteer computing lets consumers donate the

unused processing and storage capacity of their

computing devices (desktop, laptop, mobile) to

science research projects. It can provide Exa-scale

high-throughput computing, and it offers a scalable

and sustainable alternative to data-center computing.

Since its inception in 2004, BOINC-based volunteer

computing has used a “free-market” model in which

scientists create and promote projects, and volunteers

choose from among these projects. Problems inherent

in this model – notably the risk in creating a project –

have limited the adoption of volunteer computing. To

move beyond these limits, we developed a new model

in which volunteers register for science areas rather

than for projects, and a central “coordinator” allocates

computing resources to projects.

CCS CONCEPTS

10010147.10010919: Computing methodologies,

distributed computing methodologies.

KEYWORDS

Volunteer computing, high-throughput computing,

scientific computing.

1 Introduction

Volunteer computing (VC) is the use of consumer

digital devices, such as desktop and laptop computers,

tablets, and smartphones, for high-throughput

scientific computing. People participate in VC by

installing a program that downloads and executes jobs

from servers operated by science projects. About

700,000 devices are currently participating. These

devices have about 4 million CPU cores and 560,000

GPUs, and collectively provide an average throughput

of 93 PetaFLOPS.

There are currently about 30 VC projects in many

scientific areas and at many institutions. The research

enabled by VC has resulted in numerous papers in

Nature, Science, PNAS, Physical Review, Proteins,

PloS Biology, Bioinformatics, J. of Mol. Biol., J.

Chem. Phys, and other top journals [1].

Most VC projects use BOINC, an open-source

middleware system [2]. BOINC is distributed under

the LGPL v3 license and is available on Github. This

paper is concerned with the large-scale structure of

BOINC-based VC: how scientists and volunteers

participate, and how computing power is divided

among scientists.

BOINC originally used a “free market” model in which

scientists compete for volunteers and computing

power. This model has turned out to have

shortcomings which stunted the growth of VC. More

recently we have designed and implemented a new

“coordinated” model in which – although volunteers

still have a significant voice – the allocation of

computing power is done centrally.

We have implemented the coordinated model in a

system called Science United

(https://scienceunited.org). This paper presents the

motivations for the coordinated model and describes

the structure and implementation of Science United.

2 Volunteer computing Models

2.1 The free-market model

In BOINC’s original model, scientists create and

operate BOINC “projects” consisting of a web site and

a job dispatcher. They recruit volunteers by publicizing

their project and creating web pages describing their

research.

Volunteers discover VC via the publicity of a project

P, which takes them to P’s web site. This directs them

to download the BOINC client software. When the

BOINC client starts, the volunteer is shown a list of

projects, from which they select P, thus “attaching” the

device to P. The volunteer, perhaps at a later time, can

survey and evaluate other available projects. The

BOINC client lets volunteers attach devices to multiple

projects and control the division of resources among

the projects.

The intention of this model was to create a “market” in

which scientists compete for computing power by

promoting themselves and their research, and in which

volunteers periodically evaluate the set of projects and

decide, based on their personal values and interests,

how to allocate their computing resources.

More generally, our goal was that VC would divide

computing power among scientists based on the

aggregated knowledge and values of the public (rather

than administrative policies). This was inspired by the

Iowa Political Stock Market, which used an analogous

approach to predicting election results, with the

viewpoint that “Markets allocate scarce resources to

their most valued use” [3].

However, the free-market model did not achieve these

goals. In spite of the prospect of cheap computing

power, relatively few scientists created BOINC

projects. Some of the reasons for this are inherent in

the model. In the free-market model, creating a project

is risky: there's a substantial investment [7], with no

guarantee of any return, since no one may volunteer.

Adding a VC component to a grant proposal adds

uncertainty that may weaken the proposal. Secondly,

the model requires that projects publicize themselves.

This requires resources and skills (media relations, web

design, outreach) that are not readily available to most

scientists. Finally, retaining volunteers requires having

a steady supply of jobs, and the computing needs of

many research groups are sporadic.

The free-market model has also not led to the desired

volunteer behavior: most volunteers “lock in” to a few

projects and don’t actively seek out new ones [4].

Furthermore, the volunteer population is declining.

Attracting volunteers is a marketing problem. It's

difficult to do effective marketing when there are

dozens of competing brands (i.e. project names such as

SETI@home and IBM World Community Grid).

2.2 Account Managers

One problem with the free-market model is that it’s

inconvenient for volunteers to browse lots of project

web sites. Instead, we wanted to let volunteers browse

and select projects on a single “project chooser” web

site.

Instead of directly creating such a site, we enabled

other people to create them. To this end we added a

mechanism called the “account manager architecture”.

An account manager (AM) is both a web site and an

RPC server. Instead of attaching devices directly to

projects, volunteers can attach them to an AM. The

BOINC client periodically (typically once per day)

issues an “account manager RPC” to the AM. The

RPC reply contains a list of projects to which the client

should attach. The client then issues “scheduler RPCs”

to those projects to get and report jobs; see Figure 1.

Figure 1: BOINC’s account manager architecture.

The AM architecture was used by third-party

developers to create three project-chooser sites:

Gridrepublic, BAM!, and GRCPool [5, 6, 8]. These

AMs did not significantly change volunteer behavior;

however, the architecture proved to be useful for other

purposes, as we will show.

2.3 The coordinated model

We developed a new “coordinated model” to address

the problems of the free-market model: in particular, to

eliminate scientists’ financial risk in creating BOINC

projects, and to eliminates the need for volunteers to

evaluate projects. The model involves a central

“coordinator”, implemented as an account manager.

Volunteers interact with the coordinator through its

web site. They attach their BOINC clients to the

coordinator, which in turn dynamically attaches the

clients to projects. This assignment can change over

time; a volunteer may compute for a project that didn’t

exist when they first registered.

The coordinator allocates computing power among a

set of “vetted” projects, and may divide power non-

uniformly among these projects. Scientists can apply

to the coordinator to have prospective BOINC projects

pre-vetted. At that point they can be offered a certain

amount of computing throughput; this depends on their

science area, their location, and what types of

computing devices their applications can use. They can

then proceed to create a project, with minimal risk.

Projects need not have continuous computing needs.

The coordinated model differs from the free-market

model in several important ways. Volunteers no longer

directly control the allocation of computing power to

projects; they need not be aware of the existence of

projects. Therefore, projects no longer need to

publicize themselves, or to operate a web site. Their

names are no longer “brands”. The coordinator can act

as a unified brand for VC. Publicity campaigns (mass

media, social media, co-promotions, etc.) can refer to

this brand, rather than the brands of individual projects.

This allows more effective promotion.

The coordinated model doesn’t replace the free-market

model; the two co-exist. BOINC projects can operate

without being vetted by a coordinator, and volunteers

can attach to such projects even if they’re also attached

to a coordinator.

We have implemented a science-oriented coordinator

called “Science United” (SU), located at

https://scienceunited.org. As part of the SU

registration process, volunteers indicate their “science

preferences” – which areas of science they do or do not

want to support – and their preferences for the location

of the research. This aligns with the motivations of

most volunteers; support of science goals have been

shown to be the major reason for participation in VC

[4]. However, other types of coordinators are possible:

for example, coordinators that include commercial as

well as scientific projects, or that reward volunteers in

virtual currency or in-game credit.

3 Volunteer preferences in Science United

3.1 Keywords

As a basis for SU volunteer preferences, we have

defined a system of “keywords” for describing jobs.

The system has the following structure:

• There are two keyword categories: “science

area” and “location” (the geographical or

institutional location of the job submitter).

• Keywords form a hierarchy: each level N+1

keyword is a child of a single level N

keyword.

• Each keyword has a permanent integer ID,

and short and long textual descriptions.

The hierarchy and the descriptions can change over

time.

3.2 Keyword preferences

When a volunteer registers with SU, they specify

preferences for science areas and locations. A set of

preferences maps keywords to {yes, no, maybe}. “No”

means don’t run jobs with that keyword. “Yes” means

preferentially run jobs with that keyword.

Figure 2: The Science United interface for

specifying preferences.

When a new keyword is added, the default setting is

“maybe” for all volunteers. Volunteers are notified of

the new keyword so that they can change this if they

want.

Active SU volunteers average 4.8 “yes” keywords and

0.83 “no” keywords. 87% of the keyword preferences

are for science areas; the remainder are for location.

3.3 Project and job attributes

Each project has an associated set of keywords

describing its science areas and location. Some

projects have applications in multiple science areas or

run jobs on behalf of a multiple client institutions; we

call these “diverse” projects. For diverse projects, the

estimated fraction of jobs having a keyword is

associated with the keyword. The set of project

keywords can change over time, reflecting changes in

the project’s workload.

Volunteer preferences may be enforced at the project

level. If a project has a keyword with job fraction 1,

and a volunteer has specified “no” for that keyword, the

volunteer’s devices may not be attached to that project.

For diverse projects, preferences must be enforced at

the job level; a volunteer may be willing to run some

jobs but not others. For such projects, jobs have an

associated set of keywords, specified in the job

submission process. For example, if a job is submitted

by a cancer researcher at UC Berkeley, the attributes

would include “cancer research” and “UC Berkeley”.

In this case, volunteer preferences are enforced by the

project’s BOINC job dispatcher. In deciding which

jobs to send to a device, the dispatcher computes a

“score” for each job that includes a number of different

factors; it then sends the highest-scoring jobs. We

extended this to include keywords. For each of the

job’s keywords, if the volunteer has “yes” the score is

incremented, and if “no” the job is not sent.

4 Dividing computing power

The central function of SU is to divide computing

power among projects. It does this by assigning

projects to volunteer devices. These assignments can

change each time the device issues an AM RPC

(typically once per day).

The assignment policy has several goals:

• To honor volunteer keyword preferences by

preferentially assigning projects with the

volunteer’s “yes” keywords.

• To allow projects to be allocated different

shares of the resource pool (see below).

• To maximize total throughput. For example, if

a host has a GPU, it should be assigned at least

one project that can use the GPU.

These goals are possibly conflicting; for example, a

project with a large share may have keywords with few

“yes” preferences. The policy should balance these

conflicting goals.

This section describes the factors in more detail, and

concludes by describing the assignment policy.

4.1 Platforms and processing resources

A project may not be able to use all volunteer devices.

Each device supports one or more “platforms”

(Windows/x64, Mac/x64, Linux/ARM, etc.) and has a

set of “processing resources”, including a CPU and

possibly one or more GPUs of various vendors

(NVIDIA, AMD, Intel). In addition, a device may have

virtualization software (VirtualBox) installed.

Each BOINC project has a set of “app versions”, each

of which runs on a particular platform, uses a specific

set of processing resources, and may require

VirtualBox. Depending on its app versions, a project

may not be able to use a device at all, or it may be able

to use only a subset of the device’s processing

resources.

When an account manager such as SU instructs a

BOINC client to attach to a project, it can specify a set

of processing resources for which the client should

request work. Thus, for example, SU can tell the client

to get CPU jobs but not GPU jobs from the project.

4.2 Project shares

SU allows some projects to be given more computing

resources than others.

Let M(P) denote the maximum possible rate of

computing for a project P, given SU’s current resource

pool. M(P) is determined by P’s keywords and

applications. P can use a device D only if P’s keywords

are compatible with the preferences of D’s owner, and

it can use D’s processing resources (CPU and GPUs)

only if it has appropriate applications. Thus M(P) can

vary widely between projects.

In SU, each project P has a “share” S(P). Shares are

assigned administratively (see Section VI), and may

change over time. Roughly speaking, S(P) determines

how much computing is available to P compared to

other projects with similar M(P), over a time scale on

the order of 1 week.

4.3 Resource usage accounting

SU does accounting of processing resource usage. This

serves several purposes: it provides a basis for

enforcing project shares, it gives an estimate of the

system-wide throughput, and it provides basis for

volunteer incentive such as graphs of work done

recently, work “milestones”, and so on.

BOINC has a sophisticated credit system for estimating

the FLOPs performed by completed jobs. It is fairly

“cheat-proof”: it is difficult to get credit for

computation not actually performed. However, the

system is based in part on job replication, so credit for

a job may not be granted until the companion job is

completed, which could take weeks. This makes it

unsuitable for SU’s purposes.

Instead, SU uses a quantity called “estimated credit”

(EC), which is maintained by the BOINC client on a

per-job and per-project basis, based on the runtime of

jobs and the peak FLOPS of the processors they use.

EC is a cruder estimate than credit, and it is not cheat-

proof. But it accumulates continuously, with no need

to wait for job completion or validation.

4.4 Share-based prioritization

SU enforces project shares by prioritizing projects that

haven’t used their share of resources recently. It

maintains, for each project P, its average rate of

computing over the last week, A(P). We then let

𝐴𝑓𝑟𝑎𝑐(𝑃) = 𝐴(𝑃) ∑ 𝐴(𝑄)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑄

⁄

Afrac(P) is the fraction of total computing done by P.

Similarly, let

𝑆𝑓𝑟𝑎𝑐(𝑃) = 𝑆(𝑃) ∑ 𝑆(𝑄)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑄

⁄

Sfrac(P) is P’s fraction of the total share. We then let

𝐸(𝑃) = 𝐴𝑓𝑟𝑎𝑐(𝑃) 𝑆𝑓𝑟𝑎𝑐⁄ (𝑃)

E(P) represents the excess computing that P has

received, relative to its share, over the last week. It is

used to prioritize projects in the assignment algorithm

(see below). At any point, computing resources are

preferentially assigned to projects P for which E(P) is

least.

This model handles both continuous and sporadic

workloads well. For a project P with sporadic

workload, E(P) will usually be near zero. When P

generates a burst of work, it will have priority over the

continuous-workload projects, and the work will get

done quickly.

When a computer is assigned to a project, there will be

a delay of about a day (the client polling period) until

computation is reported to SU by clients. This means

that the same project (the one for which E(P) is least)

will be assigned to all hosts during that period. This is

undesirable. To solve this problem, we dynamically

adjust A(P) by an appropriate amount when a computer

is attached to or detached from P. At the end of each

accounting period, A(P) is reset based on the

accounting history.

4.5 Preventing device starvation

When SU assigns a project to a device, it assumes that

the project can supply jobs that use the given

processing resources. But this may not be the case.

The project may be temporarily down, it may not have

jobs using the target resources, or its jobs that use the

target resources may have keywords disallowed by the

user’s preferences. This can lead to device starvation

(idle device instances).

To address this problem, the BOINC client keeps track

of (project, resource) pairs that are temporarily

starved: that is, for which the last scheduler RPC

requested work for the given resource, but none was

returned. The list of temporarily starved (project,

resource) pairs is included in the AM RPC request, and

is used by the assignment algorithm (see below) to

prevent device starvation.

4.6 Assignment algorithm

BOINC clients using SU periodically (once per day)

issue an AM RPC. The request message includes a list

of currently-attached projects and their CPU and GPU

EC totals; these are used to update accounting records.

The reply message includes a list of projects to attach

to. The client detaches from any projects not on this

list, after completing pending jobs. For each project,

the reply specifies a “resource share”: a value of zero

means that the client should do work for this project

only if none of the other projects have work available.

Being attached to a project has a disk overhead; the

client caches applications files for the project, which

may include large VM image files. Hence we want to

limit the number of projects to which each client is

attached. On the other hand, if a project has a large disk

footprint on a client, we may want the client to remain

attached, with a zero resource share, so that files don’t

need to be downloaded again the next time the project

is attached.

With these factors in mind, here is a sketch of the

project assignment algorithm currently used by SU:

First, we discard projects that can’t be used, either

because of keyword preferences or because the project

doesn’t have app versions that can use the device. We

compute a “score” for each remaining project. This

score is the weighted sum of several components:

• A keyword factor. Increment the score if the

project has keywords in the volunteer’s “yes”

list

• Subtract the project’s allocation balance E(P).

• Increment the score if the host is already

attached to the project.

The weights for each of these terms have been chosen

empirically.

Then, for each processing resource R, we find the

highest-scoring project that can use R. This is the set

of projects to be attached. If the client is currently

attached to a project not in this set but whose disk

footprint exceeds a threshold (currently 100 MB) and

whose score is nonzero, we tell the client to remain

attached with zero resource share.

5 Implementation and status

SU is implemented in PHP. It uses a MySQL database

to store volunteer and project information, accounting

data, and so on. The SU source code is distributed

under the LGPL v3 license and is available on Github.

SU required some modifications to the BOINC client,

such as the starvation monitoring described in section

IV. These changes are in the current client release

(7.14).

Science United was launched in 2018. Currently it has

about 1400 volunteers and 1800 computers, of which

1500 have usable GPUs. These computers process

about 50,000 jobs per day and have a throughput of

roughly 200 TeraFLOPS. Figures 3 and 4 show recent

throughput histories for CPU and GPU respectively.

Projects such as Rosetta@home appear only in the

CPU graph because they have no GPU app versions.

Figure 3: CPU throughput of the top projects over

the last two months.

Figure 4: GPU throughput of the top projects over

the last two months.

5.1 Administration and policies

We plan to establish a committee to determine

coordinator policies, including project vetting and

resource allocation. The committee may include

representatives of scientific funding agencies, leaders

of the coordinator project, and members of the

volunteer community. The committee will decide what

projects to vet, based on criteria such as:

• The project’s computing is directed toward a

scientific or technical goal (broadly

interpreted to include things like mathematics

and cryptography).

• The project is non-commercial.

• The project’s leadership has a certain level of

qualification (as demonstrated, e.g., by

publications).

• The project can prove that it follows various

security practices, such as application code-

signing on secure offline machines.

The committee will define a process by which potential

new projects can apply for vetting. A scientist or

organization could apply for vetting, then submit a

grant proposal to fund the development of the project.

The committee will assign shares to vetted projects,

based on need, merit, or other factors.

6 Future work

6.1 Throughput guarantees

In some existing HTC systems, a user can be

guaranteed a minimum throughput over a given period

of time with high probability. Can we offer analogous

guarantees with VC resources?

The performance of a pool of volunteer computers

varies over time, in terms of both throughput and job

latency. However, with a large pool, these quantities

change slowly, and we can establish the statistics of this

change. For example, given the total throughput T at a

given time, we could find a T0 < T such that total

throughput will remain above T0 for a week with a

given confidence level.

Similarly, given a Science United resource pool and a

particular set of projects and shares, the throughput

seen by a project should remain fairly constant over

time. These throughputs can be manipulated, within

limits, by changing shares.

How can we predict, given a particular set of project

shares, how much throughput each project will get?

This depends on many factors: app versions, keywords,

the project assignment algorithm, and so on. It’s

unlikely that it can be determined analytically. Instead,

we plan to implement an emulator that does a trace-

based simulation of the entire SU system, using the

code of the RPC handler, and predicts the throughput

of each project. Using this emulator we will be able to

compute a mapping from project shares to project

throughput, and to find project shares for which a

particular project achieves a given throughput. This

will provide a basis for guaranteeing throughput to

projects over fixed periods.

Such guarantees would be project-level. Can we

provide performance guarantees to a particular job

submitter within a project that serves multiple job

submitters? This is more complex but it may be

possible. The BOINC server software allocates

resources among computing job submitters within the

project. It’s possible that the combination of a project-

level allocation and a submitter-level allocation can

provide some form of performance guarantee to the

submitter.

7 Conclusion

We have explained the problems with BOINC’s

original “free market” framework for volunteer

computing and have described the coordinated model

and its implementation in Science United. We hope to

increase the resrouce pool to the point where its

throughput is comparable to data-center HTC providers

– perhaps tens of PetaFLOPS. At that point the key

goal of the coordinated model – eliminating risk to

prospective new projects – will be realized, hopefully

resulting in a broader adoption of volunteer computing.

ACKNOWLEDGEMENTS

The idea of coordinated volunteer computing arose

from a conversation with Mislav Malenica.

This work was supported by the National Science

Foundation, award #1664190.

REFERENCES

[1] “Publications by BOINC projects”,

https://boinc.berkeley.edu/wiki/Publications_by_BOINC_pro
jects, 2020.

[2] D. P. Anderson, "BOINC: A Platform for Volunteer
Computing”, Journal of Grid Computing, Nov. 2019.

[3] Forsythe, Robert; Nelson, Forrest; Neumann, George R.;

Wright, Jack. "Anatomy of an Experimental Political Stock
Market". The American Economic Review, 1992, pp 1142-
1161

[4] O. Nov, O. Arazy and D. Anderson, "Technology-Mediated
Citizen Science Participation: A Motivational Model," in Fifth

International AAAI Conference on Weblogs and Social Media
(ICWSM 2011), Barcelona, 2011.

[5] Gridrepublic: http://gridrepublic.org/

[6] BAM!: http://bam.boincstats.com/

[7] D. Kondo, J. Bahman, P. Malecot, F. Cappello and D.

Anderson, "Cost-Benefit Analysis of Cloud Computing versus
Desktop Grids," in 18th International Heterogeneity in

Computing Workshop, Rome, 2009.

[8] Gridcoin, “The Computation Power of a Blockchain Driving
Science and Data Analysis”,
https://gridcoin.us/assets/img/whitepaper.pdf, 2018

